BÀI 2.2: CÁC DẠNG MẠCH ADC

BÀI 2.2: CÁC DẠNG MẠCH ADC

Trang 2

 

2.1 ADC dạng sóng bậc thang

2.1.1 sơ đồ khối

        Phiên bản đơn giản nhất của lớp ADC ở hình 5.16 sử dụng bộ đếm nhị phân làm thanh ghi và cho phép xung nhịp đẩy bộ đếm tăng mỗi một bước, cho đến khi VAX > VA. Đây gọi là ADC sóng dạng bậc thang, vì dạng sóng tại VAX có từng bậc đi lên. Người ta còn gọi là ADC loại bộ đếm.

Hình 5.20 là sơ đồ biểu diễn một ADC dạng sóng bậc thang.

Các thành phần của DAC dạng sóng bậc thang hình 5.20 gồm: một bộ đếm, một DAC, một bộ so sánh tương tự, một cổng NAND 3 ngõ vào điều khiển. Đầu ra của bộ so sánh dùng làm tín hiệu (End Of Conversion – kết thúc chuyển đổi).

2.1.2 Hoạt động của bộ ADC dạng sóng bậc thang

Giả sử VA, tức mức điện thế cần chuyển đổi là dương thì tiến trình hoạt động diển ra như sau:

Xung Khởi Động được đưa vào để Reset bộ đếm về 0. Mức cao của xung Khởi Động cấm không cho xung nhịp đi qua cổng AND vào bộ đếm.

Nếu đầu của DAC toàn bit 0 thì đầu ra của DAC sẽ là VAX = 0V. Vì VA>VAX nên đầu ra bộ so sánh sẽ lên mức cao.

Khi xung Khởi Động về thấp thì cổng AND cho phép xung nhịp đi qua cổng này và vào bộ đếm.

Khi giá trị bộ đếm tăng lên thì đầu ra DAC là VAX sẽ tăng mỗi lần mỗi bậc, như minh họa hình 5.20.

Tiến trình cứ tiếp tục cho đến khi VAX lên đến bậc vượt quá VA một khoảng VT. Tại thời điểm này ngõ ra của bộ so sánh về thấp và cấm không cho xung nhịp đi vào bộ đếm nên bộ đếm sẽ ngừng đếm.

Tiến trình chuyển đổi hoàn tất khi tín hiệu chuyển từ trạng thái cao xuống thấp và nội dung của bộ đếm là biểu thị dạng số của điện áp tương tự vào VA.

Bộ đếm sẽ duy trì giá trị số cho đến khi nào xung Khởi Động kế tiếp vào bắt đầu tiến trình chuyển đổi mới.

2.1.3 Độ phân giải và độ chính xác  của ADC dạng sóng bậc thang

Trong ADC dạng sóng bậc thang có nhiều yếu tố ảnh hưởng đến sai số của quá trình chuyển đổi như: kích cở bậc thang, tức độ phân giải của DAC cài trong đơn vị nhỏ nhất. Nếu giảm kích cở bậc thang ta có thể hạn chế bớt sai số nhưng luôn có khoảng cách chênh lệch giữa đại lượng thức tế và và giá trị gán cho nó. Đây gọi là sai số lượng tử.

           Cũng như trong DAC, độ chính xác không ảnh hưởng đến độ phân giải nhưng lại tùy thuộc vào độ chính xác của linh kiện trong mạch như: bộ so sánh, điện trở chính xác và chuyển mạch dòng của DAC, nguồn điện quy chiếu,…Mức sai số = 0.01% giá trị cực đại (đầy thang) cho biết kết quả ra từ ADC có thể sai biệt một khoảng như thế, do các linh kiện không lý tưởng.

Ví dụ 1

         Giả sử ADC dạng sóng bậc thang ở hình 5.20 có các thông số sau đây: tần số xung nhịp = 1Mz; VT = 0.1mV; DAC có đầu ra cực đại = 10.23V và đầu vào 10 bit. Hãy xác định:

                a. Giá trị số tương đương cho VA = 3.728V

                b. Thời gian chuyển đổi

                c. Độ phân giải của bộ chuyển đổi này

Bài giải:

a. DAC có đầu vào 10 bit và đầu ra cực đại = 10.23V nên ta tính được tổng số bậc thang có thể có là: 210 – 1 = 1023

        Suy ra kích cở bậc thang là:

Dựa trên thông số trên ta thấy VAX tăng theo từng bậc 10mV khi bộ đếm đếm lên từ 0. vì VA = 3.728, VT = 0.1mV nên VAX phải đạt từ 3.728 trở lên trước khi bộ so sánh chuyển sang trạng thái mức thấp. Như vậy phải có số bậc:

khi đó ở cuối tiến trình chuyển đổi, bộ đếm duy trì số nhị phân tương đương 37310, tức 0101110101. Đây cũng chính là giá trị số tương đương của VA = 3.728V do ADC này tạo nên.

b. Muốn hoàn tất quá trình chuyển đổi thì đòi hỏi dạng sóng dbậc thang phải lên 373 bậc, có nghĩa 373 xung nhịp áp ào với tốc độ 1 xung trên 1ms, cho nên tổng thời gian chuyển đổi là 373ms.

c. Độ phân giải của ADC này bằng với kích thước bậc thang của DAC tức là 10mV. Nếu tính theo tỉ lệ phần trăm là

 

2.1.3 Thời gian chuyển đổi

Thời gian chuyển đổi là khoảng thời gian giữa điểm cuối của xung khởi động đến thời điểm kích hoạt đầu ra của . Bộ đếm bắt đầu đếm từ 0 lên cho đến khi VAX vượt quá VA, tại thời điểm đó xuống mức thấp để kết thúc tiến trình chuyển đổi. Như vậy giá trị của thời gian chuyển đổi tC phụ thuộc vào  VA. Thời gian chuyển đổi cực đại xảy ra khi VA nằm ngay dưới bậc thang cao nhất. Sao cho VAX phải tiến lên bậc cuối cùng để kích hoạt .

Với bộ chuyển đổi N bit, ta có:

                        tC(max) = (2N – 1) chu kỳ xung nhịp

ADC ở hình 5.20 sẽ có thời gian chuyển đổi cực đại

                        tC(max) = (210 – 1)x1ms = 1023ms

Đôi khi thời gian chuyển đổi trung bình được quy định bằng ½ thời gian chuyển đổi cực đại.

Với bộ chuyển đổi dạng sóng bậc thang, ta có:

Nhược điểm của ADC dạng sóng bậc thang là thời gian chuyển đổi tăng gấp đôi với từng bit thêm vào bộ đếm. Do vậy ADC loại này không thích hợp với những ứng dụng đòi hỏi phải liên tục chuyển đổi một tín hiệu tương tự thay đổi nhanh thành tín hiệu số. Tuy nhiên với các ứng dụng tốc độ chậm thì bản chất tương đối đơn giản của ADC dạng sống bậc thang là một ưu điểm so với các loại ADC khác.

2.2 ADC liên tiếp - xấp xỉ

Bộ chuyển đổi liên tiếp - xấp xỉ  ( Successive Approximation  Convetr-SAC) là một trong những loại ADC thông dụng nhất. SAC có sơ đồ phức tạp hơn nhiều so với ADC dạng sóng bậc thang. Ngoài ra SAC còn có giá trị tC cố định, không phụ thuộc vào giá trị của đầu vào tương tự.

Hình 5.21 là một cấu hình cơ bản của SAC, tương tự cấu hình của ADC dạng sóng bậc thang. Tuy nhiên SAC không sử dụng bộ đếm cung cấp đầu vào cho DAC mà thay vào đó là thanh ghi. Logic điều khiển sửa đổi nội dung lưu trên thanh ghi theo từng bit một cho đến khi dử liệu ở thanh ghi  biến thành giá trị số tương đương với đầu vào tương tự VA trong phạm vi độ phân giải của bộ chuyển đổi.

Hoạt động của  ADC liên tiếp – xấp xỉ như sau:

Mạch ADC hoạt động theo lưu đồ hình 5.22.

Chúng ta có thể giải thích hoạt động của ADC này bằng cách dựa vào lưu đồ.

Ví dụ 2

SAC 8 bit có độ phân giải là 20mV. Với đầu vào tương tự là 2.17V, hãy tính đầu ra số tương ứng.

Giải

Số bậc của SAC:

Như vậy ở bậc thứ 108 sẽ có VAX = 2,16V, bậc 109 có VAX = 2.18V. SAC luôn sinh đầu ra VAX  cuối cùng tại bậc thang bên dưới VA. Do vậy, ở trường hợp VA = 2.17, đầu ra số sẽ là 10810 = 011011002.

Thời gian chuyển đổi

Ở SAC hình 5.22, logic điều khiển đếm từng bit trên thanh ghi, gán 1 cho nó, quyết định có cần duy trì chúng tại mức 1 hay không rồi chuyển sang bit kế tiếp. Thời gian xử lý mỗi bit kéo dài môky chu kỳ xung nhịp, nghĩa là tổng thời gian chuyển đổi của SAC N bit sẽ là N chu kỳ xung nhịp. Ta có:

                        tC cho SAC = N x1 chu kỳ xung nhịp

thời gian chuyển đổi này luôn như nhau bất chấp giá trị của VA. Điều này là đo logic điều khiển phải xử lý mỗi bit dể xem có cần đến mức 1 hay không.

Ví dụ 3

So sánh thời gian chuyển đổi của ADC 10 bit có dạng sóng bậc thang và SAC 10 bit. Giả thiết cả hai đều áp dụng tần số xung nhịp 500kHz.

Giải

Với ADC dạng sóng bậc thang, thời gian cực đại sẽ là:

                (2N – 1) x (1 chu kỳ xung nhịp) = 1023 x 2ms = 2046ms

Với SAC, thời gian chuyển đổi luôn bằng 10 chu kỳ xung nhịp tức là

                                            10 x 2ms = 20ms

Vậy với SAC thì thời gian chuyển đổi nhanh gấp 100 lần ADC dạng sóng bậc thang.

2.3 ADC nhanh

Bộ chuyển đổi nhanh (flash converter) là ADC tốc độ cao nhất hiện nay có mặt trên thị trường, nhưng sơ đồ mạch phức tạp hơn các loại khác. Ví dụ một ADC nhanh 6 bit đòi hỏi 63 bộ so sánh tương tự, còn ADC nhanh 8 bit thì con số này lên đến 255, 10 bit thì lên đến 1023. Như vậy số lượng bộ so sánh quá lớn đã giới hạn kích cỡ của ADC nhanh.

Hình 5.23 là sơ đồ của một ADC nhanh

ADC nhanh ở hình 5.23 có độ phân giải 3 bit. Kích thước bậc thang là 1V. Bộ chia điện thế thiết lập mức quy chiếu cho từng bộ so sánh để có được 7 mức ứng với 1V ( trọng số của LSB ), 2V, 3V, …7V (đầy thang). Đầu vào tương tự VA được nối đến đầu vào còn lại của từng bộ so sánh.

Với VA < 1V thì tất cả đầu ra của bộ so sánh đều lên mức cao. Với VA > 1V thì từ một đầu ra trở lên sẽ xuống mức thấp. Đầu ra của bộ so sánh được đưa vào bộ mã hoá ưu tiên tích cực ở mức thấp, sinh đầu ra ứng với đầu ra có số thứ tự cao nhất ở mức thấp của bộ so sánh. Lý luận tương tự ta sẽ có được bảng giá trị như bảng 5.4

Bảng 5.4 Bảng sự thật của ADC nhanh 3 bit hình 5.23

ADC nhanh hình 5.23 có độ phân giải 1V vì đầu vào tương tự phải thay đổi mỗi lần 1V mới có thể đưa đầu ra số lên bậc kế tiếp. Muốn có độ phân giải tinh hơn thì phải tăng tổng số mức điện thế vào (nghĩa là sử dụng nhiều điện trở chia thế hơn) và tổng số bộ so sánh. Nói chung ADC nhanh N bit thì cần 2N – 1 bộ so sánh, 2N điện trở, và logic mã hoá cần thiết.

Thời gian chuyển đổi

Bộ chuyển đổi nhanh không cần thiết tín hiệu xung nhịp vì tiến trình này xảy ra liên tục. Khi giá trị đầu vào thay đổi thì đầu ra của bộ so sánh sẽ thay đổi làm cho ngõ ra của bộ mã hóa thay đổi theo. Như vậy thời gian chuyển đổi là thời gian cần thiết để xuất hiện một đầu ra số mới đáp lại một thay đổi ở VA. Thời gian chuyển đổi chỉ phụ thuộc vào khoảng trể do truyền của bộ so sánh và bộ mã hóa. Vì vậy mà ADC nhanh có thời gian chuyển đổi vô cùng gắn.